Maintaining frequent closed itemsets over a sliding window
نویسندگان
چکیده
منابع مشابه
DELAY-CFIM: A Sliding Window Based Method on Mining Closed Frequent Itemsets over High-Speed Data Streams
Closed frequent itemset mining plays an essential role in data stream mining. It could be used in business decisions, basket analysis, etc. Most methods for mining closed frequent itemsets store the streamlined information in compact data structure when data is generated. Whenever a query is submitted, it outputs all closed frequent itemsets. However, the online processing of existing approache...
متن کاملIncremental mining of frequent sequences from a window sliding over a stream of itemsets
We introduce the problem of mining frequent sequences in a window sliding over a stream of itemsets. To address this problem, we present a complete and correct incremental algorithm based on a representation of frequent sequences inspired by the PSP algorithm and a method for counting the minimal occurrences of a sequence. The experiments were conducted on simulated data and on real instantaneo...
متن کاملMining Top-k Frequent Closed Itemsets in Data Streams Using Sliding Window
Frequent itemset mining has become a popular research area in data mining community since the last few years. There are two main technical hitches while finding frequent itemsets. First, to provide an appropriate minimum support value to start and user need to tune this minimum support value by running the algorithm again and again. Secondly, generated frequent itemsets are mostly numerous and ...
متن کاملA Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Streams
A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Consequently, the knowledge embedded in a data stream is likely to be changed as time goes by. However, most of mining algorithms or frequency approximation algorithms for a data stream do not able to extract the recent change of information in a data stream adaptively. This paper proposes a s...
متن کاملMining frequent itemsets over data streams using efficient window sliding techniques
Online mining of frequent itemsets over a stream sliding window is one of the most important problems in stream data mining with broad applications. It is also a difficult issue since the streaming data possess some challenging characteristics, such as unknown or unbound size, possibly a very fast arrival rate, inability to backtrack over previously arrived transactions, and a lack of system co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Intelligent Information Systems
سال: 2007
ISSN: 0925-9902,1573-7675
DOI: 10.1007/s10844-007-0042-3